Review of Literature on Data Mining

نویسندگان

  • Tejaswini Abhijit Hilage
  • R. V. Kulkarni
  • Leonid Churilov
  • Adyl Bagirov
  • Daniel Schwartz
  • Kate Smith
چکیده

Data mining is used for mining data from databases and finding out meaningful patterns from the database. Many organizations are now using these data mining techniques. In this paper authors has reviewed the literature of data mining techniques such as Association Rules, Rule Induction Technique, Apriori Algorithm, Decision tree and Neural network. This review of literature focuses on how data mining techniques are used for different application areas for finding out meaningful pattern from the database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Credit scoring in banks and financial institutions via data mining techniques: A literature review

This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...

متن کامل

Analysis of Pre-processing and Post-processing Methods and Using Data Mining to Diagnose Heart Diseases

Today, a great deal of data is generated in the medical field. Acquiring useful knowledge from this raw data requires data processing and detection of meaningful patterns and this objective can be achieved through data mining. Using data mining to diagnose and prognose heart diseases has become one of the areas of interest for researchers in recent years. In this study, the literature on the ap...

متن کامل

A Novel Method for Selecting the Supplier Based on Association Rule Mining

One of important problems in supply chains management is supplier selection. In a company, there are massive data from various departments so that extracting knowledge from the company’s data is too complicated. Many researchers have solved this problem by some methods like fuzzy set theory, goal programming, multi objective programming, the liner programming, mixed integer programming, analyti...

متن کامل

A review of text mining approaches and their function in discovering and extracting a topic

Background and aim: Four text mining methods are examined and focused on understanding and identifying their properties and limitations in subject discovery. Methodology: The study is an analytical review of the literature of text mining and topic modeling.  Findings: LSA could be used to classify specific and unique topics in documents that address only a single topic. The other three text min...

متن کامل

Data-Driven Approaches to Improve the Quality of Clinical Processes: A Systematic Review

Background: Considering the emergence of electronic health records and their related technologies, an increasing attention is paid to data driven approaches like machine learning, data mining, and process mining. The aim of this paper was to identify and classify these approaches to enhance the quality of clinical processes. Methods: In order to determine the knowledge related to the research ...

متن کامل

A Systematic Review of Data Mining Applications in Digital Libraries

Purpose: Study aimed to identify the applications of data mining in the provision of services, collection and management of digital libraries. Methodology: This is an applied study in terms of purpose and in terms of method is qualitative research that have been done by systematic review method. For this purpose, articles have been obtained by searching databases of Springer, Emerald, ProQuest,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011